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Summary. We compare 22 simple tests for the detection 
of maj or gene segregation in livestock populations. These 
tests belong to two groups: methods based on the com- 
parison of within-family distribution and methods based 
on the comparison of parents' and offspring perfor- 
mances. The power of the 22 tests and the robustness of 
the two more powerful of these 22 are evaluated by 
simulation. Thirteen types of major loci, differing in the 
within-genotype means, variances or alleles frequencies, 
are studied. Thirty hierarchically balanced populations 
defined by the number of sire families (5-20), dams per 
sire (1-20) and progenies per dam (1-20) are simulated. 
The quantiles are estimated from 2000 samples, the pow- 
er from 1000 samples and the robustness from 100 sam- 
ples. The more powerful tests are the within family-vari- 
ance heterogenity test (Bartlett test) and the within-family 
mean-variance regression (Fain 1978). Their robustness 
may be very low, in particular when the trait distribution 
is skewed. 
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Introduction 

Evidence from drosophila, mice and domestic animal 
species supports the hypothesis that quantitative traits 
are often under the influence of a number of genes, a few 
having substantial effects (Piper and Shrimpton 1989; 
Mayo et al. 1982). In recent years several genes having a 
major effect on commercial traits have been identified in 
livestock: the dwarf gene in poultry (M6rat and Ricard 
1974), the halothane sensitivity gene (Ollivier 1980) and 
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the RN gene (Le Roy et al. 1990) in pigs, the Booroola 
gene in sheep (Piper and Bindon 1982) and the milk flow 
gene in goats (Ricordeau et al. 1990). These discoveries, as 
well as the development of biotechnology, have increased 
the interest in statistical methods for the detection of such 
variability. Generally, the structure of the populations 
studied was not designed with a view to detecting major 
genes, thus the discovery of such a gene was most often 
a byproduct of other experiments. 

Simple indicators of maj or gene segregation have been 
proposed in the past. More or less powerful, not very 
robust but very easy to calculate, they could be used in a 
systematic way when observing populations, either for 
selection purposes or for experimentation. In this paper 
we compare, by simulation, the power and robustness of 
some of these methods. Before describing the populations 
simulated, we give the rationale and formulae for each of 
the indicators. 

Description of the compared methods 

The general principle is that the trait distribution 
parameters change when a major gene is segregating, as 
compared to the strictly polygenic (or to the sporadic) 
situation. We shall call HO and HI the strictly polygenic 
and mixed (a major gene + polygenes) inheritance, re- 
spectively. The methods differ mainly in the way the 
genetic structure of the population is considered. 

Methods based on the global distribution of the trait 

With these methods no genealogical information is used. 
The rationale for their use is that when a major gene is 
segregating, the trait distribution in the observed popula- 
tion is a mixture of subdistributions. Depending on the 
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differences between the means  and  on the p ropor t ions  of 
the componen t s  of the mixture,  the resul t ing global  distri- 
bu t ion  may  be mu l t imoda l  or s imply skewed. Thus,  tests 
of normal i ty ,  skewness and  kurtosis  have been suggested 

by H a m m o n d  and  James (1970), Hanse t  and  Michaux  
(1985a) and  Spie lman e ta l .  (1978) as first ma jor  gene 
indicators.  These tests are of very l imited robustness.  

Testing the global  d i s t r ibu t ion  as a mixture  (see Tit ter-  
i ng ton  et al. 1985 for a review of the statistical problem) 
requires m u c h  more  compu t ing  bu t  adds little to the 
genetic in te rpre ta t ion  of the results. M a c C l e a n  et al. 

(1976), M o r t o n  et al. (1978), Spie lman et al. (1978), H a n -  
set and  Michaux  (1985 a, b) a n d  Hoeshele  (1988) used this 
test, in a m a x i m u m  l ikel ihood context,  as an  indica tor  of 
major  gene segregation. More  recently, E1 A m r a o u i  and  
Goffinet  (1989) proposed  a non-pa rame t r i c  approach.  

M e t h o d s  b a s e d  on the compar ison  

o f  w i t h in - f ami l y  d is tr ibut ions  

In  this family Of tests, the first genealogical  i n fo rma t ion  
is considered th rough  the d i s t r ibu t ion  of  the da ta  in  sib 
families. The ra t iona l  for their use is that  when  a major  

gene is segregating, the wi th in- fami ly  d i s t r ibu t ion  of  the 
trait  depends  on  the pa ren t  genotype,  induc ing  hetero- 
geneity of  these d is t r ibut ions  (Tables I and  2). 

W i t h i n - f a m i l y  variance he terogene i ty .  Mdrat  (1968), F a i n  
(1978) and  Hanse t  and  Michaux  (1985b) suggested the 
use of the Bartlet t  test (1937), which is a )~2 test of within-  
g roup  homogene i ty  variances.  Let s/z, the est imation,  
with fl degrees of freedom, of the i th (i = 1 . . . . .  a) variance,  

M 
cr 2. The Bartlet t  test statistic is the rat io ~ - ,  where: 

M = (~.  f - ) l ~  l~ 

with:  

and  

C = 1 +  3 ( a - 1 )  f~ Z~-f~ 

is d is t r ibuted unde r  HO (o~ z = a 2 V i ,  that  is " n o  ma jo r  

gene")  as a Z~-1. 

Table 1. Within full sib family distribution of a quantitative trait when a major gene is segregating with two alleles A and a. Hypotheses: 
Hardy-Weinberg equilibrium; within genotype variances equal 

Parents' Frequency a Mean b Variance c Potential number 
genotypes of the family of modes 

A A  x A A  p'* lq 0.2 t 

- -  2 A A  x Aa 4 p3 q 2 

AA x aa 2p2 q2 ~2 O"2 ] 

3 (#1 -- #3) 2 + 4 (#2 -- #1) (/~2 -- #3) ~tl +2#2 +#3 0.2 + 3 
A a x A a  4pZ q z 4 16 

- -  2 Aa x aa 4 p q3 2 

aa x aa q4 #3 if2 l 

a p = 1 -  q: allele A frequency 
b #1 , Mean value of the A A  animals ;/~2, mean value of the Aa animals ;/~3, mean value of the aa animals 
c 2 2 2 2 as = 0.2 = or3 = cr : within genotype variances 

Table 2. Within half-sib family distribution of a quantitative trait when a major gene is segregating with two alleles A and a. 
Hypotheses : Hardy-Weinberg equilibrium; within genotype variances equal 

Parents' Frequency" Mean b Variance c Potential number 
genotypes of the family of modes 

A A  p2 P #1 + q #2 a2 + P q (#1 - #2) 2 2 

P #1 + #2 + q/~3 P (#1 -- #z)2 + p q (#1 -- #3) 2 + q (#2 --/@2 a 2 + 3 
Aa 2 p q  2 4 

aa q2 P ,Uz + q ,U3 a2 + P q (P2 -- #3) 2 2 

" p = 1 - q : allele A frequency 
b #1, Mean value of the A A  animals ; #2, mean value of the Aa animals ; #3, mean value of the aa animals 
c 2 2 2 2 al  = 0.2 = o3 = a : within genotype variances 
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Under H1 ("mixed inheritance") the within-family 
variances a2 may take three (half-sib family) or four (full- 
sib family) values that depend on the parent's genotypes 

M 
(Tables 1 and 2). In this case, the test statistic - -  is distrib- 

C 
uted as a X~ 2_ 1where the non-central parameter depends 
on the true value of the cry. 

A known defect of this test is its lack of robustness in 
the presence of non-normality of the distribution. More- 
over, M&at (1968) showed that the heterogeneity of vari- 
ances is not all specific for a major gene segregation. 

The power and robustness of this test have been stud- 
ied by Fain (1978) and MacCluer and Kammerer (1984) 
for human type family distribution. We shall extend this 
study to livestock family structure considering two statis- 
tics, the first based on the within-sire family variance 
(Barths) and the second on the within-dam family vari- 
ance (Bartfs). 

Within family distribution heterogeneity. M6rat (1968) 
generalized the previous approach to the test of hetero- 
geneity of skewness (91) and kurtosis (92) coefficients of 
the within-family distribution. The idea is that in families 
where a major gene is segregating (with at least one het- 
erozygous Aa parent), g2 will be negative. Because the 
asymptotic normality of 9z requires a very large family 
size, M6rat (1968) suggested pooling the families into two 
groups (small and large within-family variance) and test- 
ing the negativity of 92 for each of the two groups. 

This test has been applied by M6rat (1971) and Ham- 
mond and James (1970), who obtained inconsistent re- 
sults. We shall extend this study by considering the statis- 

tic gZi g2 h 
- -  , g21 and g2 h as being defined as the kurtosis 

~O2l 0"02 h 
coefficients of the families, the distribution variance of 
which are, respectively, below and above the mean vari- 
ance, and %2~ and a02 ~ as their standard deviations. As in 
the Bartlett test, two statistics (Meraths and Meratfs) are 
studied, corresponding to the within-sire and within-dam 
definition of the family. 

Within-family mean-variance regression. The families 
where the major gene is segregating (at least one Aa 
parent) have an intermediate mean and a large variance 
as compared with families of AA x AA or aa x aa parents, 
where the means are large (either positive or negative) 
and the variances small. Fain (1978) proposed the test of 
curvilinear relation between within family mean (Pl) and 
variance (O'i). 

The corresponding model is 

E(l~ a2) = A + B 1  #1 + B2 Pi 2 + B3 #~ 

This test has been evaluated for human family struc- 
ture by Fain and Ott (1976), Fain (1978), MacCluer and 

Kammerer (1978) and Mayo et al. (1980). It seems to be 
powerful but not robust to non-normality and het- 
eroscedasticity. 

We shah evaluate this test with a livestock family 
structure. The major gene hypothesis will be rejected 
when the F test of the model is not significant. As for the 
Bartlett and M6rat tests, the statistic will be defined for 
sire family (Fainhs) and dam family (Fainfs). 

Methods based on the comparison of parents' 
and offspring performances 

The underlying idea is that quite often when a major gene 
is segregating, a progeny appear more similar to one of its 
parents than to their mean value. Thus, the correspond- 
ing methods include the performance and genealogical 
structure of two (or three) generations. 

Regression of the within-family variance over the mean of 
the parents. Studying double muscling in cattle, Hanset 
and Michaux (1985b) showed that when a major gene is 
present, the proportion of progeny showing a high phe- 
notypic value is a discontinuous function of the sire (or 
dam) phenotype. They proposed testing the linearity of 
the regression of the proportion of double-muscled calves 
over the sire or dam phenotype. 

Since this approach requires a more or less arbitrary 
definition of abnormality, we shall test the significance of 
the curvilinear regression between the logarithm of the 
full-sib family variance and the mean of the parents. The 
method will now be referred to Hanfain. 

The Structured Exploratory Data Analysis ( SEDA ). Kar- 
lin et al. (1979), Carmelli et al. (1979) and Karlin et al. 
(1981) proposed three criteria for major gene detection: 

1) The Major Gene Index (MGI), defined as: 

E ( I Z - ( X +  Y)/2[ ~) 
MGI (cO = 

E ( I Z - S f f 2 1 Z -  y[,,/2) 

where Z is the performance of a progeny, X of its sire, 
Y of its dam, and ~ a parameter to be tested (1/2, 1 
or 2) 
This index is estimated as: 

N 1 Ki 
E E IZIj-(X~+YI)/2[ ~ i=IEj=I 

MGI (o 0 = x 1 K~ 
i~=1 E j~=l]Zlj--Xil=/2]ZiJ - Y/I ~/2 

K i being the size of the i th family (i = 1 . . . . .  N). 

2) The Offspring Between Parents regression (OBP), de- 
fined as: 

1 N 1 K, 
OBP(fl) = ~,~=1.= ~ j=, ~" eP(ZiJ) 
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with: 

10 if2 Z~j X~+Yi  
db(Zij ) = 2 

elsewhere 

~/~lX~-~l 

3) The Pairwise 
(MPCC) ,  defined as: 

52 (Z~j-Z..) (X~2 Y~ 

M P C C  = q 

Midparental Correlation Coefficient 

X.+ Y.) 2 

x. 2 + Y")~ 

where Z.., X and Y are the mean performances of 
progenies, sires and dams, respectively. 

As above, the rationale for these criteria is that com- 
pared to the value corresponding to the polygenic situa- 

X + Y .  
tion, the quantity Z - is higher than either Z - X  

2 
or Z - Y when a major gene is segregating. Thus, M G I  
will be higher and OBP and M P C C  lower for this type of 
inheritance. 

From asymptotic considerations about the mean of 
the criteria under different transmission hypotheses, Kar- 
lin et al. (1981) gave rules for the interpretation of their 
value. For instance, an M G I  below 1 should indicate 
polygenic transmission, near 1 a sporadic situation and 
above 1 monogenic inheritance. 

A number of publications (Karlin et al. 1981; Karlin 
and Williams 1981; Mayo et al. 1983; Kammerer et al. 
1984; Morton et al. 1982; Young et al. 1981) have evalu- 
ated the efficiency of SEDA either through simulations or 
on real data. All the populations studied were human 
populations. 

A difficulty in the Karlin proposition is that the 
thresholds for the biological interpretation have no 
statistical meaning. Used as suggested, their criteria can- 
not be considered as test statistics since no error control 
is guaranteed. Instead of applying their propositions, we 
shall study the M G I  and the M P C C  as real test statistics, 
rejecting the major gene hypothesis (HO) when the value 
taken by the criterion is outside a 95% confidence do- 
main, the corresponding threshold being calculated by 
simulation under HO. 

For practically purposes we shall study M P C C ,  
M G I 2  (cQ, as defined above, and M G I 3  (e), an extension 
proposed by Karlin et al. (1979), when three generations 
are considered: 

M G I  generalized." the Famula test. Famula (1986) extend- 
ed the M G I  test, replacing the phenotypes X, Y and Z by 
"animal model" estimations of the genetic values u x ,  uy 
and Uz. He justified this generalization with three rea- 
sons: (1) the possibility of calculating M G I  even for traits 
that are not measured on one or both parents (milk pro- 
duction, carcass measurements); (2) the opportunity of 
correcting the phenotype for different effects such as year 
or herd; (3) an expected better precision of the measure- 
ment (var (~) <_ vat (y)). This extension of the M G I  test has 
been used recently by Woolaston et al. (1990) in an anal- 
ysis for a major gene affecting parasite resistance in sheep. 

We shall study the Famula test in a way similar to that 
for the M G I .  Four values of c~ will be tested. The criterion 
will be referred to as Famula (~). 

We shall also study two types of statistics which are 
simpler than the Famula criterion (which is based on the 
animal model) but which still consider its main features, 
i.e. the possibility of using M G I  even for an individual 
that is not measured. Two situations will be considered 
for each of the two types of statistics: a sex-limited trait 
(the sire not being measured) and a trait measured after 
slaughter (both parents are not measured). 

We consider hierarchical and balanced populations of 
n sire families with m dams/sire and d progenies/dam. 
Let y~j be the measurement on the i j  th dam, zok on the 
ij k th progeny, z~. the mean of the i j  th dam's progeny, z~.. 
of the ith sire's progeny. The within-genotype heritability 
is denoted by h z. 

The first test statistic is based on the classical genetic 
evaluation methods. 

(1) for the sex-limited traits (Famul l ) :  

X=mdTz,. 1+c/(m-I)7 +(d-l) 

for the sires 
Y = h2y~j for the dams 
Z = h 2 Z~jk for the progenies 

(2) and for the progeny-limited traits (Famul2): 

ha / (  h2 ~ )  
X = m d ~ z i . "  l + d ( m - l )  ~ + ( d - l )  

for the sires 
h 2  , )rorthedams 

Z = h 2 Z~jk for the progenies. 

E (I Z - (X + Y)/2[~1X - (Px + Mx)/2[~'[ Y - (Pr + My)/21  ~) 
E (IZ - X I~/zl Z - YI~'/2) E ( I X  - PxI~'/21X- MxI~'/2) E ([ Y -  P'~I~/21Y- My l  ~'/2) 

where Z is the value of the progeny, X of its father, Y of its mother, Px and M x of its paternal grandparents and Pr 
and M y  of its maternal grandparents. 



The  second statistic is s imply based on the means,  

wi thou t  any regression:  

(1) for the sex-l imited traits (Famul3): 

X = z~.. for the sires 

Y = y~j for the dams  

Z = Z~jk for the progenies .  

(2) and for the p rogeny- l imi ted  traits (Famul4): 

X = zl. ' for the sires 

Y = zlj. for the dams  

Z = z~j k for the progenies.  

Methods 

The power and robustness of the indicators described have been 
evaluated through simulations for different population struc- 
tures and modes of inheritance. 

Principle of the methods 

Let HO be the hypothesis of polygenic inheritance and HI that 
of mixed (polygenic+major gene) inheritance. Under HO we 
consider a trait distributed as normal (0, 1) with a heritability of 
0.2. 

For each of the test statistics and population structures stud- 
ied, the rejection threshold at an c~ = 5 % level of HO is estimated 
from 2000 samples using the Harrel and Davis (1982) method. 

Given these rejection thresholds, the power of the test statis- 
tic is estimated, for a variety of major gene characteristics, sim- 
ulating 1000 samples in each case. The robustness of the more 
powerful of the studied statistics is evaluated in a similar way, 
but on a very limited sample size (100 replications/type of distri- 
bution). 

Evaluation of  the power: populations structures and type of gene 

We consider hierarchical and balanced populations of n sire 
families with m dams/sire and d progenies/dam. Thirty popula- 
tion types are considered with n = 5, 10, 20 progenies/sire and 
different types of sire families: 

(1) full sib: ( r e= l ;  d = 5 ,  10, 20) 
(2) half sib: (m= 5, 10, 20; d =1) 
(3) mixed: (m=2, d=5;m=5,  d=2;m=4,  d=5;m=5 ,  d=4) 

Some tests are based on the performances of three genera- 
tions. We will consider in this case that the sires and dams (2 "d 
generation) are unrelated, i.e. that each of the grandparents has 
only one progeny. 

Thirteen mixed inheritances are simulated (Table 3). In all 
cases a within major locus genotype heritability of 0.2 is as- 
sumed. The 13 modes of inheritance differ by the allele A fre- 
quency in the sire (p) or dam (q) population and by the within- 
genotype means #t and variances ~2, where t is the indice (1, 2, 3) 
for AA, Aa, and aa genotypes. Table 4 gives a summary of the 
comparisons made among modes of inheritance. 

Evaluation of the robustness 

We shall see that from the different test statistics studied, the 
within-family variance heterogeneity (Bartlett) and the mean- 
variance regression (Fain) are most often the more powerful 
tests. Moreover, the distributions of the corresponding test 
statistics under HO are known: Z 2 for Bartlett, Fisher for Fain. 
The HO rejection thresholds are thus given without any simula- 
tion, which makes these statistics much more useful. 
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Table 3. Situations of mixed inheritance simulated for the evalu- 
ation of the tests power 

Situa- Means Standard Fre- Polygenic 
tion deviations quencies" beritab- 

ility h z 
#1 #2 #3 0"1 0"2 0.3 P., P j 

1 0 0 1 1 1 1 0.7 0.7 0.2 
2 0 0 2 1 1 I 0.7 0.7 0.2 
3 0 0 3 1 1 1 0.7 0.7 0.2 
4 0 1 2 1 1 1 0.7 0.7 0.2 
5 0 0 2 1 1 2 0.7 0.7 0.2 
6 0 0 2 1 1 1 0.5 0.5 0.2 
7 0 1 2 1 1 1 0.5 0.5 0.2 
8 0 0 2 t t 2 0.5 0.5 0.2 
9 0 0 2 1 I 1 0.9 0.9 0.2 

10 0 0 2 1 1 1 0.7 0 0.2 
11 0 1 2 1 1 1 0.7 0 0.2 
12 0 0 2 I 1 2 0.7 0 0.2 
12 0 0 2 1 1 1 0.9 0 0.2 

#1, 0.1, Mean value and standard deviation within genotype AA; 
#2, 0.2, mean value and standard deviation within genotype Aa; 
#a, 0.3, mean value and standard deviation within genotype aa 

p,,, Allele A frequency for the males; Pl,  allele A frequency for 
the females 

Table 4. Effect of the type of major locus on the tests power. 
Comparison of the different situations studied 

Studied effect Situations Description 
compared 

Deviation between 1 - 2 - 3  - 
the mean effects 
of the genotypes 

2 - 4  
Dominance 6 - 7  Equal allele frequencies 

10-11 Homozygous aa dams 

Deviation between 2 - 5  - 
the variances 6 -8  Equal allele frequencies 
within-genotype 10 12 Homozygous aa dams 

2 - 6 - 9  
Allele 4 -  7 Additivity 
frequencies 5 8 Unequal within genotype 

variances 
10 13 Homozygous aa dams 

2 10 
Dam population 4-11 Additivity 
homozygous aa 5-12 Unequal within genotype 

variances 
9 13 Rare a allele 

Nevertheless, these distributions are only asymptotic. The 
robustness of these methods (using the asymptotic thresholds) 
when the population size is limited has been evaluated. We con- 
sider 10, 20, 30, 40, 50 and 100 sire familes and, in each case, four 
values for the ratio dams per sire /progenies per dam of 20/1, 5/4, 
4/5, and 1/20. 
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The robustness against a lack of normality has also been 
studied for the 50 sires family populations. Three types of non- 
normality are considered: 

(1) Discrete distribution, with three categories. The data are 
generated assuming an underlying normal distribution for 
the genetic and environmental values. The observed pheno- 
types (x) are generated comparing the underlying phenotype 
y to thresholds (2i): 

x =  1 if y < 2  I 
x = 2  if y e]fll, 22] ... 
Three types of discrete distributions are considered, corre- 
sponding to the M6rinos d'ArIes sheep (Dll), Lacaune sheep 
(D12) and Romanov sheep (D13) litter size distribution as 
given by Bodin and Elsen (1989). 

(2) Bimodal distribution (D2), the source of bimodality being 
independent of the family structure. The distribution is gen- 
erated by adding randomly + 1 or - 1 (with probability 1/2) 
to the phenotypes simulated. 

(3) Asymmetric distribution. Three types of asymmetric distri- 
butions are obtained from the normal y distribution. Using 
the Demenais et al. (1986) transformation the observed phe- 
notype x is given by 

x = e x p ( l l n ( y c + l ) ) - 1  

The parameter c (D31: c = 0.1; D32: c = 0.3; D33: e = 0.5) 
controls the asymmetry of the resulting distribution. 

Results 

Power 

For each of the test statistics studied, the best results for 
a 5% level are given in Tables 5 9. Tables 5, 6 and 7 show 
the maximum power of the tests given by numbers of sires 
(n), dams per sire (m) for full-sib families and progeny per 
dam (d) for half-sib families. Table 8 gives the family 
structure effect when the populat ion is made up of 20 sire 
families with 20 progeny. These four tables show the 
higher power of each test for the 13 modes of inheritance. 
In Table 9 the results are detailed according to the mode 

of inheritance (maximum power for the 30 family struc- 
tures studied). 

The power is always more than 50% for the Bartlett 
and Fain  tests. The statistics MPCC, Farnul2, and 
Famul4 reach this value with 20 sires. The power of the 
other criteria is never higher than 50%. 

All the statistics appear to be sensitive to sample size. 
From the tests showing a power less than 20% for a 
limited number  of sires (Table 5), some have more than 
a two-fold increase of their power when n increases from 
5 to 20 ( x 6.5 for Fainhs, x 2.8 for Hanfain and x 2.6 for 
MPCC), some are insensitive to the number  of sires 
(MGI2 (~), Famul2) and others have a power increasing 
by 50% or 100%. The tests which are powerful for a 
limited number  (n = 5) of sires reach a 100% power when 
n = 20 (Bartfs, Barths and Fainfs). The Bartlett test is 
much less sensitive than the Fain (1978) test to the num- 
ber of sires. In both cases, the hs version is affected more 

Table 5. Effect of the number of sires on the power of the tests 
(%) 

Test statistics Number of sires 

5 10 20 

Bartpf 80 97 100 
Bartdf 69 91 100 
Meratpf 21 33 38 
Meratdf 20 29 34 
Fainpf 53 87 99 
Faindf 14 47 91 
Hanf ain 11 21 31 
MPCC 25 38 64 
MGI2 (0.5) 8 11 14 
MGI2 (1) 12 14 13 
MGI2 (2) 16 18 23 
MGI3 (0.5) 12 14 20 
MGI3 (1) 19 23 34 
MGI3 (2) 19 24 33 
Famula (0.5) 13 13 25 
Famula (1) 13 14 22 
Famula (2) 13 12 20 
Famula (4) 13 13 22 
Famul 1 19 25 32 
Famul2 31 41 55 
Famul3 15 15 16 
Famul4 28 41 53 

Table 6. Effect of the number of dams, with 1 progeny per dam, 
on the power of the tests (%) 

Test statistics Number of dams/sire 

5 10 20 

Bartdf 58 87 98 
Meratdf 11 17 30 
Faindf 50 74 88 
MPCC 23 45 64 
MaI2 (0.5) 8 I J 14 
MG[2 (1) 9 11 13 
MGI2 (2) 15 18 23 
MGI3 (0.5) 14 16 20 
MGI3 (1) 21 26 34 
MGI3 (2) 18 27 33 
Famula (0.5) 13 6 8 
Famula (1) 14 7 7 
Famula (2) 15 7 8 
Famula (4) 23 27 19 
Famul 1 23 23 27 
Famul3 14 13 14 

by a limited number  of families than thefs  version. The 
Meratfs and Meraths statistics show similar tendencies 
even if their very low power does not  permit a clear 
interpretation of the results. 

The four test statistics derived from Famula ' s  (1986) 
propositions are independent of family size (Tables 6 
and 7). The major gene indexes MGI2 (e) and MGI3 (~) 
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TaMe 7. Effect of the number of progeny per sire, with 1 progeny 
per dam, on the power of the tests (%) 

Test statistics Number of progeny/sire 

5 10 20 

Bartpf 64 96 t 00 
Meratpf 10 32 38 
Fainpf 52 56 92 
Hanfain 10 15 17 
MPCC 27 34 40 
MGI2 (0.5) 8 9 11 
MG12 (1) 11 13 13 
MGI2 (2) 14 17 19 
MGI3 (0.5) 14 15 14 
MGI3 (1) 15 21 19 
MGI3 (2) 14 17 16 
Famula (0.5) 19 24 25 
Famula (t) 21 25 22 
Famula (2) 22 26 20 
Famula (4) 19 19 15 
Famull 21 23 32 
Famul3 13 15 16 

Table 8. Effect of the family structure on the power of the tests 
(%). 20 sire families, m dams/sire and d progenies/dam 

Test statistics m = i m = 4 m = 5 m = 20 
d = 2 0  d = 5  d = 4  d =  t 

Bartpf t 00 99 97 -- 
Bartdf -- 100 99 98 
Meratpf 38 16 13 -- 
Meratdf - 34 31 30 
Fainpf 92 99 99 - 
Faindf - 91 90 88 
Hanf a in 17 31 28 - 
MPCC 40 52 54 64 
MGI2 (0.5) 11 12 13 14 
MGI2 (1) 13 13 13 13 
MGI2 (2) 19 20 21 23 
MGI3 (0.5) 14 14 17 20 
MGI3 (1) 19 24 30 34 
MGI3 (2) 16 20 23 33 
Famula (0.5) 25 15 12 8 
Famula (1) 22 13 12 7 
Famula (2) 20 10 11 8 
Famula (4) 15 16 22 19 
Famul I 32 25 29 27 
Famul2 -- 48 55 -- 
Famul3 16 13 14 14 
Famul4 - 53 52 - 

are no t  sensitive to the n u m b e r  o f  p r o g e n i e s / d a m ,  but  

show a 5 0 - 1 0 0 %  increase o f  their  power  when  the num-  
ber  o f  d a m s / s i r e  changes f r o m  5 to 20. The  Bart let t ,  F a i n  

(1978) and also the M6ra t  (1968) me thods  are sensitive to  

the parameters ,  as are the MPCC statistics. 

W h e n  the p r o p o r t i o n  o f  ha l f  sibs increases in the sam- 

ple, meratfs and  famula (c 0 (for small  c~ values) are  less 

Table 9. Effect of the type of major locus on the power of the 
tests (%). Situations 1 to 13 are defined in Table 4 

Test Situations 
statistics 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Bartpf 9 62 98 17 94 78 15 100 13 18 11 76 6 
Bartdf 9 52 98 10 95 50 10 100 12 5 8 56 6 
Meratpf 7 8 17 32 6 18 8 21 7 16 8 38 13 
Meratdf 7 8 20 6 6 18 7 30 6 9 7 34 9 
Fainpf 21 38 86 22 88 47 21 99 23 39 19 99 40 
Faindf 7 30 79 11 63 52 9 9J 6 J6 IJ 67 12 
Hanfain 7 7 11 9 16 21 7 31 7 16 8 22 8 
MPCC 10 21 38 60 17 64 34 35 7 52 I 26 15 
MGI2(0.5) 7 7 13 5 10 8 7 I t  7 6 8 10 14 
MGI2(t) 6 7 15 5 13 9 5 14 7 7 8 13 13 
MGI2(2) 6 10 21 6 19 11 6 23 7 9 6 11 8 
MGI3(0.5) 6 8 14 6 17 6 5 20 7 6 5 13 7 
MGI3(t) 6 9 24 5 31 6 4 34 7 6 3 17 7 
MGI3(2) 8 8 15 6 33 6 4 27 8 7 4 12 7 
Famula(0.5) 7 6 7 5 4 6 6 5 8 10 16 9 25 
Famula(1) 7 6 6 5 4 5 5 4 7 9 16 10 25 
Famula(2) 7 7 6 5 6 5 5 7 8 8 19 12 26 
Famula(4) 7 8 9 6 27 6 5 16 8 8 17 18 19 
Famull 8 18 32 14 29 17 16 19 8 11 11 23 12 
Famul2 9 22 32 46 16 48 55 24 8 15 14 11 5 
Famul3 7 12 16 8 16 14 7 14 8 8 6 7 2 
Famul4 11 31 53 32 26 46 35 24 10 13 12 8 6 

powerful .  On  the o ther  hand,  MPCC, MGI3 (c 0 and 

Hanfain appear  to be m o r e  powerful .  The  four  tests 

der ived f r o m  Famula ,  as MGI2 (c O, Meraths and  Bart le t t  

and Fa in  tests, are no t  sensitive to family  structure.  

Conce rn ing  the m o d e  of  inher i tance  (Table 9), a cen- 

tral  po in t  is the dev ia t ion  be tween  genotype  means.  Ex- 

cept  for famuIa (~), all the tests power  increases wi th  

#3 - # 1  deviat ion.  W i t h  a difference h igher  than  3 a l ,  the  

Bar t le t t  test as well as the F a i n  (1978) test and  the 

Famul4 statistic have  a p o w e r  greater  than  50%.  Wi th  a 

2 c h devia t ion,  only  the Bart le t t  test reaches this power ,  

and with  a al  dev ia t ion  none  o f  the cri ter ia  satisfies that  

proper ty .  Thus,  the ma jo r  gene co r respond ing  to situa- 

t ion 1 is pract ica l ly  unident i f iable .  

Conce rn ing  dominance ,  the results are no t  as clear:  a 

c o d o m i n a n t  gene is easier to detect  wi th  SEDA methods  

when  the Bart le t t  and Fa in  (1978) tests are m u c h  m o r e  

efficient in the d o m i n a n t  s i tuat ion.  Similary,  he te rogene-  

ity o f  the wi th in -genotype  var iances  adds to the power  

o f  Bart le t t  and  Fa in  tests, bu t  decreases the usefulness o f  

the SEDA. The  behav iou r  o f  the three statistics MPCC, 
Meratfs and  Meraths is m u c h  m o r e  difficult  to under -  

s tand because  the effect o f  the d o m i n a n c e  s i tua t ion  de- 

pends  on the allele frequencies.  

The  equal i ty  o f  the allele f requencies  helps when  the 
gene is d o m i n a n t  or  when  the wi th in -genotype  var iances  

are different ;  given the l imited sample  sizes s tudied here, 

the chance,  when  a is rare,  that  one  o f  the sires shows a 
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Table 10. Effect of the population size on the tests level: number 
of H 0 rejection, at the 5% level, for 100 simulations under H o 

Test Number Number Number of sires 
statistics dams/sire progenies/ 

dam 10 20 30 40 50 100 

Bartpf 4 5 7 2 3 11 2 8 
1 20 4 8 4 6 2 6 

Fainpf 4 5 4 10 6 10 6 10 
1 20 1 11 10 10 11 9 

Bartdf 4 5 7 5 10 6 4 2 
20 1 7 7 7 4 7 4 

Faindf 4 5 5 3 5 7 8 5 
20 1 5 8 10 13 5 6 

Table 11. Effect of the non-normality of the distribution on the 
robustness of the tests: number o f H  o rejection, at the 5% level, 
for 100 simulations under H o 

Test Number Number Type of distributiona 
statistics dams/ progenies/ 

sire dam Dl l  D12 D13 D2 D31 D32 D33 

Bartpf 4 5 0 100 23 4 
1 20 0 100 28 6 

Fainpf 4 5 32 100 77 34 
1 20 6 t00 77 34 

Bartdf 4 5 0 100 28 4 
20 1 99 2 0 0 100 47 8 

Faindf 4 5 12 100 78 26 
20 1 100 100 64 2 100 92 27 

a D11, D12, D13, discrete distributions; D2, bimodal distribu- 
tion; D31, D32, D33, asymmetric distributions 

distr ibution with a high mean (or variance) is small. On 
the other hand,  except for MPCC, Meraths and Meratfs, 
the power of  the criterion is not  l inked to the allele fre- 
quencies for a codominant  gene. 

When the dam popula t ion  is fixed for aa, the frequen- 
cy equil ibrium is still an advantage,  but  for Famula (~). 
MPCC, Meratfs and Meraths appear  more powerful  
when all the dams are aa. On the other hand,  Bartlett  and 
the four famul indicators are more powerful  when both 
alleles are segregating in the dam populat ion.  Finally, the 
Fain  (1978) method is not  very sensitive to this effect. 

Robustness 

The results are given in Tables 10 (effect of  the popula-  
t ion size) and 11 (non-normality).  Both tests (Bartlett  
and Fain),  whatever their version (fs and hs), are not  
sensitive to the number  of  sires, since no increase in the 
number  of  HO rejection is observed when this number  
decreases even for the smaller numbers studied. 

Deviations from normal i ty  have more heterogeneous 
consequences on robustness. Concerning discrete distri- 

butions (D1), both  the Bartlett  and Fa in  tests are useless 
for the D11 si tuation (only two classes), the rejection of  
HO being systematic in this case. The Fain  test is still 
useless for si tuations D I 2  and D13, when the Bartlett  test 
appears  robust,  the values being even lower, as compared  
to the normal  case, which could indicate a loss of  power. 
Conversely, b imodal i ty  due to the environment has a 
similar but  much lighter effect; no error  for the Bartlett  
test, up to 32% errors for the Fa in  (1978) criteria. 

Finally, the asymmetry of  the distr ibution is a very 
impor tant  source of  false HO rejections, in part icular  for 
the Fain  (1978) statistics. 

Discuss ion  and conclus ions  

With the family sizes studied here, we confirm the posi- 
tive results of  Fa in  (1978) concerning Bartlett and Fain, 
which cannot  be compared  to the negative results of  
MacCluer  and Kammerer  (1984), obtained with much 
smaller family sizes. 

On the other hand, we do not  confirm the superiority 
of Fain over Bartlett for dominant  genes, as described by 
Fa in  (1978), our results showing no systematic tendency. 
Mayo  et al. (1980) found an impor tan t  loss of  power of  
Fa in  when the variance within the heterozygous geno- 
type Aa is smaller than the variance within AA or aa. We 
obtained the opposite result when the variance within AA 
is higher than the others. 

Concerning the SEDA, we confirm the relative quality 
of  MGI for detection of  frequent and additive genes 
(Karl in et al. 1981; Mor ton  et al. 1982). On the other 
hand, the low performance of  MPPC mentioned by 
Mor ton  et al. (1982) cannot  be considered here as sys- 
tematic, the power  of  this test varying largely with the 
type of  gene studied (from 1% to 64%). 

Finally, we confirm the poor  value of  M6rat ' s  test 
(1968) as evaluated by H a m m o n d  and James (1970). This 
could indicate that  the popula t ion  studied by M6rat  
(1971) was quite atypical.  

Concerning the power, four tests may  be retained for 
widespread use: Bartlett, Fain, MPCC and Famul4. The 
first two are powerful  for limited number  of  sires and 
very powerful  for 20 sires and 20 progenies/sire.  They are 
fully able to detect dominant  major  genes, or maj or genes 
showing a more variable distr ibution within the favour- 
able homozygous  populat ion.  On the other hand, MPCC 
and Famul4 need at least 20 sire families in order to get 
a power  over 50% and are part icular ly suited to additive 
gene with equal within-genotype variances. 

The robustness of  the two more powerful  tests 
(Bartlett and Fain) is limited, which could limit their 
usefulness, in part icular  when the trait  is not  normal ly  
distr ibuted (a situation natural ly observed in the global  
distr ibution when a major  gene is effectively segregating 
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in the population). Our conclusions are similar to Fain 's  
(1978) results. Fain, when simulating human  populations 
(one mother/father,  four children/family), found a low 
robustness for both methods and better behaviour of 
Bartlett. Following Fain (1978), a normalization of the 
data before the analysis may improve the robustness, but 
results in an important  loss of power (about 50%). 

If these test statistics are to be largely used as first 
indicators of a major gene segregation, eventual positive 
results would have to be confirmed and detailed with 
more sophisticated methods such as the use of recombi- 
nant  D N A  technology and the ML methods (Mayo 
1989). 
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